Hypoxia tolerance in elasmobranchs. I. Critical oxygen tension as a measure of blood oxygen transport during hypoxia exposure.

نویسندگان

  • Ben Speers-Roesch
  • Jeffrey G Richards
  • Colin J Brauner
  • Anthony P Farrell
  • Anthony J R Hickey
  • Yuxiang S Wang
  • Gillian M C Renshaw
چکیده

The critical O(2) tension of whole-animal O(2) consumption rate (M(O2)), or P(crit), is the water P(O2) (Pw(O(2))) at which an animal transitions from an oxyregulator to an oxyconformer. Although P(crit) is a popular measure of hypoxia tolerance in fishes because it reflects the capacity for O(2) uptake from the environment at low Pw(O(2)), little is known about the interrelationships between P(crit) and blood O(2) transport characteristics and increased use of anaerobic metabolism during hypoxia exposure in fishes, especially elasmobranchs. We addressed this knowledge gap using progressive hypoxia exposures of two elasmobranch species with differing hypoxia tolerance. The P(crit) of the hypoxia-tolerant epaulette shark (Hemiscyllium ocellatum, 5.10±0.37 kPa) was significantly lower than that of the comparatively hypoxia-sensitive shovelnose ray (Aptychotrema rostrata, 7.23±0.40 kPa). Plasma [lactate] was elevated above normoxic values at around P(crit) in epaulette sharks, but increased relative to normoxic values at Pw(O(2)) below P(crit) in shovelnose rays, providing equivocal support for the hypothesis that P(crit) is associated with increased anaerobic metabolism. The M(O2), arterial P(O2) and arterial blood O(2) content (Ca(O(2))) were similar between the two species under normoxia and decreased in both species with progressive hypoxia, but as Pw(O(2)) declined, epaulette sharks had a consistently higher M(O2) and Ca(O(2)) than shovelnose rays, probably due to their significantly greater in vivo haemoglobin (Hb)-O(2) binding affinity (in vivo Hb-O(2) P(50)=4.27±0.57 kPa for epaulette sharks vs 6.35±0.34 kPa for shovelnose rays). However, at Pw(O(2)) values representing the same percentage of each species' P(crit) (up to ∼175% of P(crit)), Hb-O(2) saturation and Ca(O(2)) were similar between species. These data support the hypothesis that Hb-O(2) P(50) is an important determinant of P(crit) and suggest that P(crit) can predict Hb-O(2) saturation and Ca(O(2)) during hypoxia exposure, with a lower P(crit) being associated with greater O(2) supply at a given Pw(O(2)) and consequently better hypoxia tolerance. Thus, P(crit) is a valuable predictor of environmental hypoxia tolerance and hypoxia exposures standardized at a given percentage of P(crit) will yield comparable levels of arterial hypoxaemia, facilitating cross-species comparisons of responses to hypoxia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EFFECTS OF HYPOXIC HYPOXIA AND CARBON MONOXIDE-INDUCED HYPOXIA ON THE CARDIOVASCULAR SYSTEM AND REGIONAL BLOOD FLOW OF THE ANESTHETIZED CAT

The purpose of this study was to investigate the potential responses of the cardiovascular system and regional blood flow to hypoxic hypoxia (BB) and to carbon monoxide (CO)-induced hypoxia (COH). Ten anesthetized cats were studied under two nonnoxic (control: CONT) and two hypoxic conditions. Four types of radioactive micro spheres were used to measure regional blood flow during CONT an...

متن کامل

A product of its environment: the epaulette shark (Hemiscyllium ocellatum) exhibits physiological tolerance to elevated environmental CO2

Ocean acidification, resulting from increasing anthropogenic CO2 emissions, is predicted to affect the physiological performance of many marine species. Recent studies have shown substantial reductions in aerobic performance in some teleost fish species, but no change or even enhanced performance in others. Notably lacking, however, are studies on the effects of near-future CO2 conditions on la...

متن کامل

Hypoxia-inducible factor-1 mediates adaptive developmental plasticity of hypoxia tolerance in zebrafish, Danio rerio.

In recent years, natural and anthropogenic factors have increased aquatic hypoxia the world over. In most organisms, the cellular response to hypoxia is mediated by the master regulator hypoxia-inducible factor-1 (HIF-1). HIF-1 also plays a critical role in the normal development of the cardiovascular system of vertebrates. We tested the hypothesis that hypoxia exposures which resulted in HIF-1...

متن کامل

Respiratory responses to short term hypoxia in the snapping turtle, Chelydra serpentina.

Among vertebrates, turtles are able to tolerate exceptionally low oxygen tensions. We have investigated the compensatory mechanisms that regulate respiration and blood oxygen transport in snapping turtles during short exposure to hypoxia. Snapping turtles started to hyperventilate when oxygen levels dropped below 10% O(2). Total ventilation increased 1.75-fold, essentially related to an increas...

متن کامل

Exercise in patients with chronic obstructive pulmonary disease.

Patients with chronic obstructive pulmonary disease (COPD) may incur exercise limitation by any one or combination of disturbances in breathing mechanics, oxygen transport, respiratory muscle metabolism or respiratory regulation and sensation. In spite of the increased ventilation demand/capacity ratio in these patients, the relationship between breathing mechanics, respiratory muscle fatigue, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 215 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2012